Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Lancet Microbe ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38734029

RESUMO

BACKGROUND: During the 2017-18 influenza season in the USA, there was a high incidence of influenza illness and mortality. However, no apparent antigenic change was identified in the dominant H3N2 viruses, and the severity of the season could not be solely attributed to a vaccine mismatch. We aimed to investigate whether the altered virus properties resulting from gene reassortment were underlying causes of the increased case number and disease severity associated with the 2017-18 influenza season. METHODS: Samples included were collected from patients with influenza who were prospectively recruited during the 2016-17 and 2017-18 influenza seasons at the Johns Hopkins Hospital Emergency Departments in Baltimore, MD, USA, as well as from archived samples from Johns Hopkins Health System sites. Among 647 recruited patients with influenza A virus infection, 411 patients with whole-genome sequences were available in the Johns Hopkins Center of Excellence for Influenza Research and Surveillance network during the 2016-17 and 2017-18 seasons. Phylogenetic trees were constructed based on viral whole-genome sequences. Representative viral isolates of the two seasons were characterised in immortalised cell lines and human nasal epithelial cell cultures, and patients' demographic data and clinical outcomes were analysed. FINDINGS: Unique H3N2 reassortment events were observed, resulting in two predominant strains in the 2017-18 season: HA clade 3C.2a2 and clade 3C.3a, which had novel gene segment constellations containing gene segments from HA clade 3C.2a1 viruses. The reassortant re3C.2a2 viruses replicated with faster kinetics and to a higher peak titre compared with the parental 3C.2a2 and 3C.2a1 viruses (48 h vs 72 h). Furthermore, patients infected with reassortant 3C.2a2 viruses had higher Influenza Severity Scores than patients infected with the parental 3C.2a2 viruses (median 3·00 [IQR 1·00-4·00] vs 1·50 [1·00-2·00]; p=0·018). INTERPRETATION: Our findings suggest that the increased severity of the 2017-18 influenza season was due in part to two intrasubtypes, cocirculating H3N2 reassortant viruses with fitness advantages over the parental viruses. This information could help inform future vaccine development and public health policies. FUNDING: The Center of Excellence for Influenza Research and Response in the US, National Science and Technology Council, and Chang Gung Memorial Hospital in Taiwan.

2.
Heliyon ; 10(3): e24570, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314306

RESUMO

RNA viruses have been shown to express various short RNAs, some of which have regulatory roles during replication, transcription, and translation of viral genomes. However, short viral RNAs generated from SARS-CoV-1 and SARS-CoV-2 genomic RNAs remained largely unexplored, possibly due limitations of the widely used library preparation methods for small RNA deep sequencing and corresponding data processing. By analyzing publicly available small RNA sequencing datasets, we observed that human Calu-3 cells infected by SARS-CoV-1 or SARS-CoV-2 accumulate multiple previously unreported short viral RNAs. In addition, we verified the presence of the five most abundant SARS-CoV-2 short viral RNAs in SARS-CoV-2-infected human lung adenocarcinoma cells by quantitative PCR. Interestingly, the copy number of the observed SARS-CoV-2 short viral RNAs dramatically exceeded the expression of previously reported viral microRNAs in the same cells. We hypothesize that the reported SARS-CoV-2 short viral RNAs could serve as biomarkers for early infection stages due to their high abundance. Furthermore, unlike SARS-CoV-1, the SARS-CoV-2 infection induced significant (Benjamini-Hochberg-corrected p-value <0.05) deregulation of Y-RNA, transfer RNA, vault RNA, as well as more than 300 endogenous short RNAs that aligned predominantly to human protein-coding and long noncoding RNA transcripts. In particular, more than 20-fold upregulation of reads derived from Y-RNA (and several transfer RNAs) have been documented in RNA-seq datasets from SARS-CoV-2 infected cells. Finally, a significant proportion of short RNAs derived from full-length viral genomes also aligned to various human genome (hg38) sequences, suggesting opportunities to investigate regulatory roles of short viral RNAs during infection. Further characterization of the small RNA landscape of both viral and host genomes is clearly warranted to improve our understanding of molecular events related to infection and to design more efficient strategies for therapeutic interventions as well as early diagnosis.

3.
ACS Biomater Sci Eng ; 9(11): 6225-6240, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37906514

RESUMO

There is an urgent demand for antibacterial bone grafts in clinics. Worryingly, the misuse and overuse of antibiotics accelerate the emergence of drug-resistant bacteria. Therefore, this study prepared a novel injectable bioceramic cement without antibiotics (FS-BCS), which showed good antibacterial properties by loading iron and strontium onto a matrix composed of brushite and calcium sulfate. The setting time, injectability, microstructure, antibacterial properties, anti-biofilm properties, and cytocompatibility of the novel bioceramic cement were evaluated thoroughly. The results showed that the material was highly injectable and antiwashout. The antibacterial tests revealed that FS-BCS inhibited the growth of 99.9% E. coli and S. aureus separately in the broth due to the synergistic effect of strontium and iron. Simultaneously, crystal violet and fluorescent staining tests revealed that the material could significantly inhibit the formation of E. coli and S. aureus biofilms. In addition, the co-incorporation of iron and strontium promoted the proliferation and migration of osteoblasts. Therefore, FS-BCS has good application potential in antibiotic-free anti-infection bone grafting using minimally invasive surgery.


Assuntos
Escherichia coli , Staphylococcus aureus , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Ferro/farmacologia , Estrôncio/farmacologia , Procedimentos Cirúrgicos Minimamente Invasivos
4.
mBio ; 13(4): e0183922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35856618

RESUMO

Inactivated influenza vaccines induce greater antibody responses in females than males among both humans and mice. To test the breadth of protection, we used recombinant mouse-adapted A/California/2009 (maA/Cal/09) H1N1 viruses containing mutations at one (1M), two (2M), or three (3M) antigenic sites, in addition to a virus containing the 1M mutation and a substitution of the Ca2 antigenic site (Sub) with one derived from an H5 hemagglutinin (HA) to challenge mice of both sexes. Following maA/Cal/09 vaccination, females produced greater virus-specific, class-switched total IgG and IgG2c antibodies against the vaccine and all mutant viruses, and antibodies from females recognized a greater number of unique, linear HA epitopes than did antibodies from males. While females had greater neutralizing antibody titers against the vaccine virus, both sexes showed a lower neutralization capacity against mutant viruses. After virus challenge, vaccinated females had lower pulmonary virus titers and reduced morbidity than males for the 1M and 2M viruses, but not the Sub virus. Females generated greater numbers of germinal center (GC) B cells containing superior somatic hypermutation (SHM) frequencies than vaccinated males. Deletion of activation-induced cytidine deaminase (Aicda) eliminated female-biased immunity and protection against the 2M virus. Harnessing methods to improve GC B cell responses and frequencies of SHM, especially in males, should be considered in the development of universal influenza vaccines. IMPORTANCE Adult females develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection would be dependent on the extent of virus diversity as well as molecular mechanisms in B cells which constrain the breadth of epitope recognition. We developed a panel of mouse-adapted (ma) A/Cal/09 viruses that had mutations in the immunodominant hemagglutinin. Following vaccination against maA/Cal/09, females were better able to neutralize maA/Cal/09 than males, but neutralization of mutant maA/Cal/09 viruses was equally poor in both sexes, despite vaccinated females being better protected against these viruses. Vaccinated females benefited from the greater production of class-switched, somatically hypermutated antibodies generated in germinal center B cells, which increased recognition of more diverse maA/Cal/09 hemagglutinin antigen epitopes. Female-biased protection against influenza infection and disease after vaccination is driven by differential mechanisms in males versus females and should be considered in the design of novel vaccine platforms.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Diversidade de Anticorpos , Epitopos , Feminino , Centro Germinativo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Masculino , Camundongos , Vacinas de Produtos Inativados
5.
EBioMedicine ; 75: 103812, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35033854

RESUMO

BACKGROUND: Thromboembolism is a life-threatening manifestation of coronavirus disease 2019 (COVID-19). We investigated a dysfunctional phenotype of vascular endothelial cells in the lungs during COVID-19. METHODS: We obtained the lung specimens from the patients who died of COVID-19. The phenotype of endothelial cells and immune cells was examined by flow cytometry and immunohistochemistry (IHC) analysis. We tested the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the endothelium using IHC and electron microscopy. FINDINGS: The autopsy lungs of COVID-19 patients exhibited severe coagulation abnormalities, immune cell infiltration, and platelet activation. Pulmonary endothelial cells of COVID-19 patients showed increased expression of procoagulant von Willebrand factor (VWF) and decreased expression of anticoagulants thrombomodulin and endothelial protein C receptor (EPCR). In the autopsy lungs of COVID-19 patients, the number of macrophages, monocytes, and T cells was increased, showing an activated phenotype. Despite increased immune cells, adhesion molecules such as ICAM-1, VCAM-1, E-selectin, and P-selectin were downregulated in pulmonary endothelial cells of COVID-19 patients. Notably, decreased thrombomodulin expression in endothelial cells was associated with increased immune cell infiltration in the COVID-19 patient lungs. There were no SARS-CoV-2 particles detected in the lung endothelium of COVID-19 patients despite their dysfunctional phenotype. Meanwhile, the autopsy lungs of COVID-19 patients showed SARS-CoV-2 virions in damaged alveolar epithelium and evidence of hypoxic injury. INTERPRETATION: Pulmonary endothelial cells become dysfunctional during COVID-19, showing a loss of thrombomodulin expression related to severe thrombosis and infiltration, and endothelial cell dysfunction might be caused by a pathologic condition in COVID-19 patient lungs rather than a direct infection with SARS-CoV-2. FUNDING: This work was supported by the Johns Hopkins University, the American Heart Association, and the National Institutes of Health.


Assuntos
Transtornos da Coagulação Sanguínea/metabolismo , COVID-19/metabolismo , Regulação para Baixo , Endotélio Vascular/metabolismo , Hipóxia/metabolismo , Pulmão/metabolismo , SARS-CoV-2/metabolismo , Trombomodulina/biossíntese , Idoso , Idoso de 80 Anos ou mais , Transtornos da Coagulação Sanguínea/patologia , COVID-19/patologia , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Endotélio Vascular/ultraestrutura , Feminino , Humanos , Hipóxia/patologia , Pulmão/ultraestrutura , Masculino , Pessoa de Meia-Idade
6.
JCI Insight ; 7(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34855624

RESUMO

BACKGROUNDWhile most children who contract COVID-19 experience mild disease, high-risk children with underlying conditions may develop severe disease, requiring interventions. Kinetics of antibodies transferred via COVID-19 convalescent plasma early in disease have not been characterized.METHODSIn this study, high-risk children were prospectively enrolled to receive high-titer COVID-19 convalescent plasma (>1:320 anti-spike IgG; Euroimmun). Passive transfer of antibodies and endogenous antibody production were serially evaluated for up to 2 months after transfusion. Commercial and research ELISA assays, virus neutralization assays, high-throughput phage-display assay utilizing a coronavirus epitope library, and pharmacokinetic analyses were performed.RESULTSFourteen high-risk children (median age, 7.5 years) received high-titer COVID-19 convalescent plasma, 9 children within 5 days (range, 2-7 days) of symptom onset and 5 children within 4 days (range, 3-5 days) after exposure to SARS-CoV-2. There were no serious adverse events related to transfusion. Antibodies against SARS-CoV-2 were transferred from the donor to the recipient, but antibody titers declined by 14-21 days, with a 15.1-day half-life for spike protein IgG. Donor plasma had significant neutralization capacity, which was transferred to the recipient. However, as early as 30 minutes after transfusion, recipient plasma neutralization titers were 6.2% (range, 5.9%-6.7%) of donor titers.CONCLUSIONConvalescent plasma transfused to high-risk children appears to be safe, with expected antibody kinetics, regardless of weight or age. However, current use of convalescent plasma in high-risk children achieves neutralizing capacity, which may protect against severe disease but is unlikely to provide lasting protection.Trial registrationClinicalTrials.gov NCT04377672.FundingThe state of Maryland, Bloomberg Philanthropies, and the NIH (grants R01-AI153349, R01-AI145435-A1, K08-AI139371-A1, and T32-AI052071).


Assuntos
Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , COVID-19/terapia , Farmacocinética , SARS-CoV-2/metabolismo , Adolescente , COVID-19/sangue , Criança , Pré-Escolar , Feminino , Humanos , Imunização Passiva , Lactente , Masculino , Fatores de Risco , Soroterapia para COVID-19
7.
Viruses ; 11(11)2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717991

RESUMO

Hepatitis E virus (HEV) causes predominantly acute and self-limiting hepatitis. However, in HEV-infected pregnant women, the case fatality rate because of fulminant hepatitis can be up to 30%. HEV infection is zoonotic for some genotypes. The HEV genome contains three open reading frames: ORF1 encodes the non-structural polyprotein involved in viral RNA replication; ORF2 encodes the capsid protein; ORF3 encodes a small multifunctional protein. Interferons (IFNs) play a significant role in the early stage of the host antiviral response. In this study, we discovered that the capsid protein antagonizes IFN induction. Mechanistically, the capsid protein blocked the phosphorylation of IFN regulatory factor 3 (IRF3) via interaction with the multiprotein complex consisting of mitochondrial antiviral-signaling protein (MAVS), TANK-binding kinase 1 (TBK1), and IRF3. The N-terminal domain of the capsid protein was found to be responsible for the inhibition of IRF3 activation. Further study showed that the arginine-rich-motif in the N-terminal domain is indispensable for the inhibition as mutations of any of the arginine residues abolished the blockage of IRF3 phosphorylation. These results provide further insight into HEV interference with the host innate immunity.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Hepatite E/fisiologia , Hepatite E/metabolismo , Hepatite E/virologia , Interações Hospedeiro-Patógeno , Interferons/biossíntese , Domínios e Motivos de Interação entre Proteínas , Proteínas do Capsídeo/genética , Genótipo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferons/química , Modelos Biológicos , Fatores de Crescimento Neural , Fosforilação , Poli I-C/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo
8.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462568

RESUMO

Interferons (IFNs) play a crucial role in host antiviral response by activating the JAK/STAT (Janus kinase/signal transducer and activator of transcription) signaling pathway to induce the expression of myriad genes. STAT2 is a key player in the IFN-activated JAK/STAT signaling. Porcine reproductive and respiratory syndrome virus (PRRSV) is an important viral pathogen, causing huge losses to the swine industry. PRRSV infection elicits a meager protective immune response in pigs. The objective of this study was to investigate the effect of PRRSV on STAT2 signaling. Here, we demonstrated that PRRSV downregulated STAT2 to inhibit IFN-activated signaling. PRRSV strains of both PRRSV-1 and PRRSV-2 species reduced the STAT2 protein level, whereas the STAT2 transcript level had minimal change. PRRSV reduced the STAT2 level in a dose-dependent manner and shortened STAT2 half-life significantly from approximately 30 to 5 h. PRRSV-induced STAT2 degradation could be restored by treatment with the proteasome inhibitor MG132 and lactacystin. In addition, PRRSV nonstructural protein 11 (nsp11) was identified to interact with and reduce STAT2. The N-terminal domain (NTD) of nsp11 was responsible for STAT2 degradation and interacted with STAT2 NTD and the coiled-coil domain. Mutagenesis analysis showed that the amino acid residue K59 of nsp11 was indispensable for inducing STAT2 reduction. Mutant PRRSV with the K59A mutation generated by reverse genetics almost lost the ability to reduce STAT2. Together, these results demonstrate that PRRSV nsp11 antagonizes IFN signaling via mediating STAT2 degradation and provide further insights into the PRRSV interference of the innate immunity.IMPORTANCE PRRSV infection elicits a meager protective immune response in pigs. One of the possible reasons is that PRRSV antagonizes interferon induction and its downstream signaling. Interferons are key components in the innate immunity and play crucial roles against viral infection and in the activation of adaptive immune response via JAK/STAT signaling. STAT2 is indispensable in the JAK/STAT signaling since it is also involved in activation of antiviral activity in the absence of STAT1. Here, we discovered that PRRSV nsp11 downregulates STAT2. Interestingly, the N-terminal domain of nsp11 is responsible for inducing STAT2 degradation and directly interacts with STAT2 N-terminal domain. We also identified a crucial amino acid residue K59 in nsp11 since a mutation of it led to loss of the ability to downregulate STAT2. A mutant PRRSV with mutation of K59 had minimal effect on STAT2 reduction. Our data provide further insights into PRRSV interference with interferon signaling.


Assuntos
Endorribonucleases/metabolismo , Interferons/antagonistas & inibidores , Interferons/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Fator de Transcrição STAT2/antagonistas & inibidores , Fator de Transcrição STAT2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Endorribonucleases/química , Células HEK293 , Células HeLa , Humanos , Imunidade Inata , Interferon-alfa/farmacologia , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Modelos Moleculares , Fosforilação , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Domínios Proteicos , Transdução de Sinais , Suínos , Proteínas não Estruturais Virais/química
9.
Virology ; 527: 180-187, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530224

RESUMO

Zika virus (ZIKV) is a mosquito-borne positive-sense single-stranded RNA virus in the family of Flaviviridae. Unlike other flaviviruses, ZIKV infection of pregnant women may result in birth defects in their newborns, such as microcephaly or vision problem. ZIKV is known to antagonize the interferon (IFN) production in infected cells. However, the exact mechanism of this interference is not fully understood. Here, we demonstrate that NS5 protein of ZIKV MR766 strain antagonizes IFN production through inhibiting the activation of TANK-binding kinase 1 (TBK1), which phosphorylates the transcription activator IFN regulatory factor 3 (IRF3). Mechanistically, NS5 interacts with the ubiquitin-like domain of TBK1 and results in less complex of TBK1 and TNF (tumor necrosis factor) receptor-associated factor 6 (TRAF6), leading to dampened TBK1 activation and IRF3 phosphorylation. Our study provides insights into the mechanism of ZIKV evasion of IFN-mediated innate immunity.


Assuntos
Interferon beta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Domínio Catalítico , Linhagem Celular , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas não Estruturais Virais/química , Infecção por Zika virus/virologia
10.
Curr Protoc Microbiol ; 48: 15M.1.1-15M.1.14, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29512113

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a member of the family Arteriviridae, order Nidovirale. PRRSV is an enveloped, single-stranded, positive-sense RNA virus with a genome around 15 kb in length. For propagation of PRRSV in vitro, the MARC-145 cell line is the most often used in a laboratory setting. Infectious cDNA clones of many PRRSV strains have been established, from which these viruses can be recovered. PRRSV titration is generally done in MARC-145 cells. PRRSV RNA copy numbers can be assessed by reverse transcription and real-time PCR. Here, protocols for PRRSV propagation, virus recovery from infectious cDNA clones, and quantification are presented. © 2018 by John Wiley & Sons, Inc.


Assuntos
Técnicas de Cultura de Células/métodos , Reação em Cadeia da Polimerase/métodos , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Cultura de Vírus/métodos , Animais , Linhagem Celular , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Suínos , Replicação Viral
11.
J Virol ; 92(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444946

RESUMO

Movement of macromolecules between the cytoplasm and the nucleus occurs through the nuclear pore complex (NPC). Karyopherins comprise a family of soluble transport factors facilitating the nucleocytoplasmic translocation of proteins through the NPC. In this study, we found that karyopherin α6 (KPNA6; also known as importin α7) was required for the optimal replication of porcine reproductive and respiratory syndrome virus (PRRSV) and Zika virus (ZIKV), which are positive-sense, single-stranded RNA viruses replicating in the cytoplasm. The KPNA6 protein level in virus-infected cells was much higher than that in mock-infected controls, whereas the KPNA6 transcript remains stable. Viral infection blocked the ubiquitin-proteasomal degradation of KPNA6, which led to an extension of the KPNA6 half-life and the elevation of the KPNA6 level in comparison to mock-infected cells. PRRSV nsp12 protein induced KPNA6 stabilization. KPNA6 silencing was detrimental to the replication of PRRSV, and KPNA6 knockout impaired ZIKV replication. Moreover, KPNA6 knockout blocked the nuclear translocation of PRRSV nsp1ß but had a minimal effect on two other PRRSV proteins with nuclear localization. Exogenous restitution of KPNA6 expression in the KPNA6-knockout cells results in restoration of the nuclear translocation of PRRSV nsp1ß and the replication of ZIKV. These results indicate that KPNA6 is an important cellular factor for the replication of PRRSV and ZIKV.IMPORTANCE Positive-sense, single-stranded RNA (+ssRNA) viruses replicate in the cytoplasm of infected cells. The roles of transport factors in the nucleocytoplasmic trafficking system for the replication of +ssRNA viruses are not known. In this study, we discovered that PRRSV and ZIKV viruses needed karyopherin α6 (KPNA6), one of the transport factors, to enhance the virus replication. Our data showed that viral infection induced an elevation of the KPNA6 protein level due to an extension of the KPNA6 half-life via viral interference of the ubiquitin-proteasomal degradation of KPNA6. Notably, KPNA6 silencing or knockout dramatically reduced the replication of PRRSV and ZIKV. PRRSV nsp1ß depended on KPNA6 to translocate into the nucleus. In addition, exogenous restitution of KPNA6 expression in KPNA6-knockout cells led to the restoration of nsp1ß nuclear translocation and ZIKV replication. These results reveal a new aspect in the virus-cell interaction and may facilitate the development of novel antiviral therapeutics.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Transporte Proteico/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Zika virus/fisiologia , alfa Carioferinas/genética , Aedes , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Poro Nuclear/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Suínos , Células Vero , Replicação Viral/fisiologia , Zika virus/genética
12.
J Gen Virol ; 98(7): 1720-1729, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28699875

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to antagonize the innate immune response. An atypical PRRSV strain A2MC2 is capable of inducing synthesis of type I interferons (IFNs) in cultured cells. Here, we show that the middle half of the A2MC2 genome is needed for triggering the IFN synthesis. First, a cDNA infectious clone of this atypical strain was constructed as a DNA-launched version. Virus recovery was achieved from the infectious clone and the recovered virus, rA2MC2, was characterized. The rA2MC2 retained the feature of IFN induction in cultured cells. Infection of pigs with the rA2MC2 virus caused viremia similar to that of the wild-type virus. Chimeric infectious clones were constructed by swapping genomic fragments with a cDNA clone of a moderately virulent strain VR-2385 that antagonizes IFN induction. Analysis of the rescued chimeric viruses demonstrated that the middle two fragments, ranging from nt4545 to nt12709 of the A2MC2 genome, were needed for the IFN induction, whereas the chimeric viruses containing any one of the two A2MC2 fragments failed to do so. The results and the cDNA infectious clone of the IFN-inducing A2MC2 will facilitate further study of its biology, ultimately leading towards the development of an improved vaccine against PRRS.


Assuntos
Genoma Viral , Interferon Tipo I/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Animais , Interferon Tipo I/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881658

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a pleiotropic signaling mediator of many cytokines, including interleukin-6 (IL-6) and IL-10. STAT3 is known to play critical roles in cell growth, proliferation, differentiation, immunity and inflammatory responses. The objective of this study was to determine the effect of porcine reproductive and respiratory syndrome virus (PRRSV) infection on the STAT3 signaling since PRRSV induces a weak protective immune response in host animals. We report here that PRRSV infection of MARC-145 cells and primary porcine pulmonary alveolar macrophages led to significant reduction of STAT3 protein level. Several strains of both PRRSV type 1 and type 2 led to a similar reduction of STAT3 protein level but had a minimal effect on its transcripts. The PRRSV-mediated STAT3 reduction was in a dose-dependent manner as the STAT3 level decreased, along with incremental amounts of PRRSV inocula. Further study showed that nonstructural protein 5 (nsp5) of PRRSV induced the STAT3 degradation by increasing its polyubiquitination level and shortening its half-life from 24 h to ∼3.5 h. The C-terminal domain of nsp5 was shown to be required for the STAT3 degradation. Moreover, the STAT3 signaling in the cells transfected with nsp5 plasmid was significantly inhibited. These results indicate that PRRSV antagonizes the STAT3 signaling by accelerating STAT3 degradation via the ubiquitin-proteasomal pathway. This study provides insight into the PRRSV interference with the JAK/STAT3 signaling, leading to perturbation of the host innate and adaptive immune responses. IMPORTANCE: The typical features of immune responses in PRRSV-infected pigs are delayed onset and low levels of virus neutralizing antibodies, as well as weak cell-mediated immunity. Lymphocyte development and differentiation rely on cytokines, many of which signal through the JAK/STAT signaling pathway to exert their biological effects. Here, we discovered that PRRSV antagonizes the JAK/STAT3 signaling by inducing degradation of STAT3, a master transcription activator involved in multiple cellular processes and the host immune responses. The nsp5 protein of PRRSV is responsible for the accelerated STAT3 degradation. The PRRSV-mediated antagonizing STAT3 could lead to suppression of a broad spectrum of cytokines and growth factors to allow virus replication and spread in host animals. This may be one of the reasons for the PRRSV interference with the innate immunity and its poor elicitation of protective immunity. This finding provides insight into PRRSV pathogenesis and its interference with the host immune responses.


Assuntos
Janus Quinases/metabolismo , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Humanos , Imunidade Inata , Oncostatina M/farmacologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Transdução de Sinais/efeitos dos fármacos , Suínos , Transcrição Gênica , Ubiquitina/metabolismo , Ubiquitinação , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
14.
Vaccine ; 35(1): 125-131, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27876202

RESUMO

Achieving consistent protection by vaccinating pigs against porcine reproductive and respiratory syndrome virus (PRRSV) remains difficult. Recently, an interferon-inducing PRRSV vaccine candidate strain A2MC2 was demonstrated to be attenuated and induced neutralizing antibodies. The objective of this study was to determine the efficacy of passage 90 of A2MC2 (A2P90) to protect pigs against challenge with moderately virulent PRRSV strain VR-2385 (92.3% nucleic acid identity with A2MC2) and highly virulent atypical PRRSV MN184 (84.5% nucleic acid identity with A2MC2). Forty 3-week old pigs were randomly assigned to five groups including a NEG-CONTROL group (non-vaccinated, non-challenged), VAC-VR2385 (vaccinated, challenged with strain VR-2385), VR2385 (challenged with strain VR-2385), VAC-MN184 (vaccinated, challenged with strain MN184) and a MN184 group (challenged with MN184 virus). Vaccination was done at 3weeks of age followed by challenge at 8weeks of age. No viremia was detectable in any of the vaccinated pigs; however, by the time of challenge, 15/16 vaccinated pigs had seroconverted based on ELISA and had neutralizing antibodies against a homologous strain with titers ranging from 8 to 128. Infection with VR-2385 resulted in mild-to-moderate clinical disease and lesions. For VR-2385 infected pigs, vaccination significantly lowered PRRSV viremia and nasal shedding by 9days post challenge (dpc), significantly reduced macroscopic lung lesions, and significantly increased the average daily weight gain compared to the non-vaccinated pigs. Infection with MN184 resulted in moderate-to-severe clinical disease and lesions regardless of vaccination status; however, vaccinated pigs had significantly less nasal shedding by dpc 5 compared to non-vaccinated pigs. Under the study conditions, the A2P90 vaccine strain was attenuated without detectable shedding, improved weight gain, and offered protection to the pigs challenged with VR-2385 by reduction of virus load and macroscopic lung lesions. Further work is needed to investigate different vaccination and challenge protocols, including routes, doses, timing and strains.


Assuntos
Interferons/metabolismo , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Formação de Anticorpos , Peso Corporal , Pulmão/patologia , Distribuição Aleatória , Suínos , Resultado do Tratamento , Viremia/prevenção & controle , Eliminação de Partículas Virais
15.
Sci Rep ; 6: 36312, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27805024

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) strain A2MC2 induces type I interferons in cultured cells. The objective of this study was to attenuate this strain by serial passaging in MARC-145 cells and assess its virulence and immunogenicity in pigs. The A2MC2 serially passaged 90 times (A2MC2-P90) retains the feature of interferon induction. The A2MC2-P90 replicates faster with a higher virus yield than wild type A2MC2 virus. Infection of primary pulmonary alveolar macrophages (PAMs) also induces interferons. Sequence analysis showed that the A2MC2-P90 has genomic nucleic acid identity of 99.8% to the wild type but has a deletion of 543 nucleotides in nsp2. The deletion occurred in passage 60. The A2MC2-P90 genome has a total of 35 nucleotide variations from the wild type, leading to 26 amino acid differences. Inoculation of three-week-old piglets showed that A2MC2-P90 is avirulent and elicits immune response. Compared with Ingelvac PRRS® MLV strain, A2MC2-P90 elicits higher virus neutralizing antibodies. The attenuated IFN-inducing A2MC2-P90 should be useful for development of an improved PRRSV vaccine.


Assuntos
Interferon Tipo I/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Proteínas Virais/genética , Cultura de Vírus/métodos , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Linhagem Celular , Chlorocebus aethiops , Variação Genética , Genótipo , Macrófagos Alveolares/citologia , Macrófagos Alveolares/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Deleção de Sequência , Suínos , Células Vero , Virulência , Replicação Viral
16.
Viruses ; 8(8)2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27548202

RESUMO

Hepatitis E virus (HEV) is one of the viral pathogens causing hepatitis in humans. HEV open reading frame 3 (ORF3) encodes a small multifunctional protein (VP13), which is essential for HEV infection. In this study, a linear epitope was identified in a polyproline (PXXP) motif from VP13 of genotype 1 HEV by using a monoclonal antibody. The epitope was detected in enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunofluorescence assays. Epitope mapping showed that the epitope locates in a proline-rich region containing a PXXP motif in amino acid residues 66-75 of VP13. The epitope was also detected in HEV-infected liver cells and reacted with genotype 1-specific antibodies in an HEV-positive human serum sample. The results demonstrated that the epitope in the PXXP motif of the genotype 1 VP13 is linear and surface-oriented, which should facilitate in-depth studies on the viral protein and HEV biology.


Assuntos
Mapeamento de Epitopos , Epitopos/imunologia , Vírus da Hepatite E/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Genótipo , Vírus da Hepatite E/classificação , Vírus da Hepatite E/genética , Humanos , Immunoblotting , Camundongos Endogâmicos BALB C
17.
Vet Microbiol ; 187: 1-7, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27066702

RESUMO

The interferon-induced double-strand RNA activated protein kinase (PKR) plays an important role in antiviral response. The objective of this study was to assess the effect of porcine reproductive and respiratory syndrome virus (PRRSV) on PKR activation. Here we report that PRRSV inhibited PKR activation during its early stage infection of primary pulmonary alveolar macrophages (PAMs). PRRSV infection led to lower level of phosphorylated PKR in comparison with mock-infected cells. The PKR inhibition was sustained until 10h post infection in the presence of polyI:C, a synthetic analog of double-stranded RNA activating PKR. PKR-mediated phosphorylation of the eukaryotic translation initiation factor eIF2α was also lower in the PRRSV-infected PAMs during the early stage infection. Interestingly, inactivated PRRSV was capable to inhibit the PKR activation until 6h post infection. This suggests that structural components of PRRSV virions were responsible for the inhibition, although PRRSV replication was needed for longer inhibition. These results indicate that the downregulation of PKR activation during early infection stage should be essential for PRRSV to avoid the antiviral response to initiate replication. This finding contributes to our understanding on PRRSV interaction with host innate immune response and reveal a target for control of PRRSV infection.


Assuntos
Regulação para Baixo , Síndrome Respiratória e Reprodutiva Suína/enzimologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/genética , Macrófagos Alveolares/enzimologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Fosforilação , Poli I-C/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos , Replicação Viral/fisiologia
18.
Antiviral Res ; 120: 134-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26086884

RESUMO

Hepatitis E virus (HEV) infection is a cause of hepatitis in humans worldwide and has been associated with a case-fatality rate of up to 30% in pregnant women. Recently, persistent and chronic HEV infections have been recognized as a serious clinical problem, especially in immunocompromised individuals. To date, there are no FDA-approved HEV-specific antiviral drugs. In this study, we evaluated antisense peptide-conjugated morpholino oligomers (PPMO) designed against HEV genomic sequences as potential HEV-specific antiviral compounds. Two genetically-distinct strains of human HEV, genotype 1 Sar55 and genotype 3 Kernow-C1, isolated from patients with acute and chronic hepatitis, respectively, were used to evaluate inhibition of viral replication by PPMO in liver cells. The anti-HEV PPMO produced a significant reduction in the levels of HEV RNA and capsid protein, indicating effective inhibition of HEV replication. PPMO HP1, which targets a highly conserved sequence in the start site region of ORF1, was also effective against the genotype 3 Kernow-C1 strain in stably-infected HepG2/C3A liver cells. The antiviral activity observed was specific, dose-responsive and potent, suggesting that further exploration of PPMO HP1 as a potential HEV-specific antiviral agent is warranted.


Assuntos
Antivirais/farmacologia , Portadores de Fármacos/metabolismo , Vírus da Hepatite E/efeitos dos fármacos , Morfolinos/farmacologia , Oligonucleotídeos Antissenso/farmacologia , Peptídeos/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas do Capsídeo/análise , Linhagem Celular , Vírus da Hepatite E/fisiologia , Hepatócitos/virologia , Humanos , Testes de Sensibilidade Microbiana , RNA Viral/análise , Carga Viral
19.
J Virol ; 88(20): 11924-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100852

RESUMO

Hepatitis E virus (HEV) causes both endemic and epidemic human hepatitis by fecal-oral transmission in many parts of the world. Zoonotic transmission of HEV from animals to humans has been reported. Due to the lack of an efficient cell culture system, the molecular mechanisms of HEV infection remain largely unknown. In this study, we found that HEV replication in hepatoma cells inhibited poly(I·C)-induced beta interferon (IFN-ß) expression and that the HEV open reading frame 1 (ORF1) product was responsible for this inhibition. Two domains, X and the papain-like cysteine protease domain (PCP), of HEV ORF1 were identified as the putative IFN antagonists. When overexpressed in HEK293T cells, the X domain (or macro domain) inhibited poly(I·C)-induced phosphorylation of interferon regulatory factor 3 (IRF-3), which is the key transcription factor for IFN induction. The PCP domain was shown to have deubiquitinase activity for both RIG-I and TBK-1, whose ubiquitination is a key step in their activation in poly(I·C)-induced IFN induction. Furthermore, replication of a HEV replicon containing green fluorescent protein (GFP) (E2-GFP) in hepatoma cells led to impaired phosphorylation of IRF-3 and reduced ubiquitination of RIG-I and TBK-1, which confirmed our observations of X and PCP inhibitory effects in HEK293T cells. Altogether, our study identified the IFN antagonists within the HEV ORF1 polyprotein and expanded our understanding of the functions of several of the HEV ORF1 products, as well as the mechanisms of HEV pathogenesis. Importance: Type I interferons (IFNs) are important components of innate immunity and play a crucial role against viral infection. They also serve as key regulators to evoke an adaptive immune response. Virus infection can induce the synthesis of interferons; however, viruses have evolved many strategies to antagonize the induction of interferons. There is little knowledge about how hepatitis E virus (HEV) inhibits induction of host IFNs, though the viral genome was sequenced more than 2 decades ago. This is the first report of identification of the potential IFN antagonists encoded by HEV. By screening all the domains in the open reading frame 1 (ORF1) polyprotein, we identified two IFN antagonists and performed further research to determine how and at which step in the IFN induction pathway they antagonize host IFN induction. Our work provides valuable information about HEV-cell interaction and pathogenesis.


Assuntos
Vírus da Hepatite E/fisiologia , Interferon Tipo I/antagonistas & inibidores , Fases de Leitura Aberta , Sequência de Bases , Western Blotting , Primers do DNA , Células HEK293 , Humanos , Interferon Tipo I/biossíntese , Fosforilação , Ubiquitinação , Proteínas Virais/fisiologia
20.
J Virol ; 88(15): 8696-705, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850742

RESUMO

UNLABELLED: Hepatitis E virus (HEV) causes both the endemic and epidemic spread of acute hepatitis in many parts of the world. HEV open reading frame 3 (ORF3) encodes a 13-kDa multifunctional protein (vp13) that is essential for HEV infection of animals. The exact role of vp13 in HEV infection remains unclear. In this study, vp13 was found to enhance interferon (IFN) production induced by poly(I · C), a synthetic analog of double-stranded RNA. Poly(I · C) treatment induced a higher level of IFN-ß mRNA in HeLa cells stably expressing vp13 than in control cells. Using a luciferase reporter construct driven by the IFN-ß promoter, we demonstrated that vp13 enhanced retinoic acid-inducible gene I (RIG-I)-dependent luciferase expression. This enhancement was found to be due to both an increased level of RIG-I protein and its activation. The levels of both endogenous and exogenous RIG-I were increased by vp13 by extension of the half-life of RIG-I. Additionally, vp13 interacts with the RIG-I N-terminal domain and enhances its K63-linked ubiquitination, which is essential for RIG-I activation. Analysis of vp13 deletion constructs suggested that the C-terminal domain of vp13 was essential for the enhancement of RIG-I signaling. In HEV-infected hepatoma cells, wild-type HEV led to a higher level of RIG-I and more poly(I · C)-induced IFN-ß expression than did ORF3-null mutants. Analysis of vp13 from four HEV genotypes showed that vp13 from genotype I and III strains boosted RIG-I signaling, while vp13 from genotype II and IV strains had a minimal effect. These results indicate that vp13 enhances RIG-I signaling, which may play a role in HEV invasion. IMPORTANCE: Hepatitis E virus (HEV) is a significant pathogen causing hepatitis in many parts of the world, yet it is understudied compared with other viral hepatitis pathogens. Here we found that the HEV open reading frame 3 product, vp13, enhances interferon induction stimulated by a synthetic analog of double-stranded RNA. This enhancement may play a role in HEV invasion, as vp13 is essential for HEV infection in vivo. The results of this study provide insights into virus-cell interactions during HEV infection. In addition to revealing its possible roles in HEV interference with cellular signaling, these results suggest that the second half of the vp13 sequence can be ligated into the genomes of attenuated live viruses to induce an innate immune response for better protective immunity, as well as a marker for differentiation of vaccinated animals from those infected with the corresponding wild-type viruses.


Assuntos
RNA Helicases DEAD-box/metabolismo , Vírus da Hepatite E/imunologia , Interferon beta/biossíntese , Proteínas Virais/imunologia , Proteína DEAD-box 58 , Células HeLa , Humanos , Poli I-C/imunologia , Receptores Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA